Automatic 3D model-based method for liver segmentation in MRI based on active contours and total variation minimization

نویسندگان

  • Arantza Bereciartua
  • Artzai Picón
  • Adrian Galdran
  • Pedro M. Iriondo
چکیده

Liver cancer is one of the leading causes of cancer-related mortality worldwide. Non-invasive techniques of medical imaging such as Computerized Tomography (CT) and Magnetic Resonance Imaging (MRI) are often used by radiologists for diagnosis and surgery planning. With the aim of assuring the most reliable intervention planning to surgeons, new accurate methods and tools must be provided to locate and segment the regions of interest. Automated liver segmentation is a challenging problem for which promising results have been achieved mostly for CT. However, MRI is required by radiologists, since it offers better information for diagnosis purposes. MRI liver segmentation represents a challenge due to the presence of characteristic artifacts, such as partial volumes, noise, low contrast and poorly defined edges of the liver in relation to adjacent organs. In this paper, we present a method for MRI automatic 3D liver segmentation by means of an Active Contour model extended to 3D and minimized by Total Variation dual approach that has also been extended to 3D. A new approach to enhance the contrast in the input MRI image is proposed and it allows more accurate segmentation. The proposed methodology allows replacing the input image by a probability map obtained by means of a previously generated statistical model of the liver. An Accuracy of 98.89 and Dice Similarity Coefficient of 90.19 are in line with other state-of-the-art methodologies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Hybrid 3D Colon Segmentation Method Using Modified Geometric Deformable Models

Introduction: Nowadays virtual colonoscopy has become a reliable and efficient method of detecting primary stages of colon cancer such as polyp detection. One of the most important and crucial stages of virtual colonoscopy is colon segmentation because an incorrect segmentation may lead to a misdiagnosis.  Materials and Methods: In this work, a hybrid method based on Geometric Deformable Models...

متن کامل

A hierarchical Convolutional Neural Network for Segmentation of Stroke Lesion in 3D Brain MRI

Introduction: Brain tumors such as glioma are among the most aggressive lesions, which result in a very short life expectancy in patients. Image segmentation is highly essential in medical image analysis with applications, particularly in clinical practices to treat brain tumors. Accurate segmentation of magnetic resonance data is crucial for diagnostic purposes, planning surgical treatments, a...

متن کامل

Neural Network-Based Learning Kernel for Automatic Segmentation of Multiple Sclerosis Lesions on Magnetic Resonance Images

Background: Multiple Sclerosis (MS) is a degenerative disease of central nervous system. MS patients have some dead tissues in their brains called MS lesions. MRI is an imaging technique sensitive to soft tissues such as brain that shows MS lesions as hyper-intense or hypo-intense signals. Since manual segmentation of these lesions is a laborious and time consuming task, automatic segmentation ...

متن کامل

A hierarchical Convolutional Neural Network for Segmentation of Stroke Lesion in 3D Brain MRI

Introduction: Brain tumors such as glioma are among the most aggressive lesions, which result in a very short life expectancy in patients. Image segmentation is highly essential in medical image analysis with applications, particularly in clinical practices to treat brain tumors. Accurate segmentation of magnetic resonance data is crucial for diagnostic purposes, planning surgical treatments, a...

متن کامل

Automatic Prostate Cancer Segmentation Using Kinetic Analysis in Dynamic Contrast-Enhanced MRI

Background: Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) provides functional information on the microcirculation in tissues by analyzing the enhancement kinetics which can be used as biomarkers for prostate lesions detection and characterization.Objective: The purpose of this study is to investigate spatiotemporal patterns of tumors by extracting semi-quantitative as well as w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biomed. Signal Proc. and Control

دوره 20  شماره 

صفحات  -

تاریخ انتشار 2015